

 Navigation

 	
 next

 	lightmdb 1.0 documentation

Welcome to LightMDB’s documentation!

	Team:	itucsdb1630

	Members:	
	Emin Mastizada

	Emre Eroglu

	Memduh Gokirmak

	Onur Can Carkci

	Seda Bilgin

Light Movie DataBase

We love watching movies, make lists for different emotions and times.

Current movie database sites became very complex and interaction between users are minimum.
Our idea is to create social network on movies for movie lovers like us.
Share ideas, follow professionals, reviewers and friends, review movies, make your playlists.
Get notification when new movies added by your favorite director or in your lovely categories.

We are Movie Discussion Network.

Contents:

	User Guide

	Developer Guide

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

User Guide

	In homepage there is intro about website, Top Movies and Top Users:

[image: home page image]

	Check Privacy Notice to learn details of information that will be used after registration:

[image: privacy notice page]

	There is registration and sign in button at navigation, register for website:

[image: registration page image]

	After registration go to profile and check details:

[image: profile button after registration]

	Profile Page where you can edit details, delete account and write status messages:

[image: profile page]

	You can navigate to other profile pages and follow people you know:

[image: follow admin]

	When users follow each-other they will be able to chat over direct messaging:

[image: write message]

	Search for movies using search bar on top:

[image: search movies]

	View movie details:

[image: view movie details]

	Also watch movie trailer:

[image: watch trailer]

	Administration members will have one extra button in navigation for admin page:

[image: admin page]

	Parts Implemented by Emin Mastizada

	Parts Implemented by Member Name

	Parts Implemented by Memduh Gökırmak

	Parts Implemented by Seda Bilgin
	CONTACT US PAGE

	CONTACT US ADMIN PAGE

	Comments

	Parts Implemented by Member Name

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	User Guide

Parts Implemented by Emin Mastizada

	Home page

	Admin page

	Registration page

	Login page

	User profile page

	Follow, unfollow ajax (javascript)

	Status Message

	Movie Search

	Movie page

	Privacy Policy and License Compability

	Gravatar Images

	LightBox for trailers

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	User Guide

Parts Implemented by Member Name

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	User Guide

Parts Implemented by Memduh Gökırmak

	Playlists page

	Various former revisions of movie page

	Single avg file for camera shape

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	User Guide

Parts Implemented by Seda Bilgin

CONTACT US PAGE

Users can ask questions by submitting the form on “Contact Us” page. There are some validation controls while submitting the form. For examle users could not submit without an e-mail or enter chracters to phone number.

[image: Contact Us page-form]

CONTACT US ADMIN PAGE

On Admin page users could select sent questions and search and list questions by their status. Sent questions with “New” status are listed by default.

[image: Contact Admin - select]

Users also update the status of sent questions by clicking “ADD”.

[image: Contact Admin - update]

Comments

On Contact admin page users could add comments on sent questions while updating their status.

[image: Contact Admin - comment]

After clicking “Show” users could see previous comments and update or delete comments.

[image: Contact Admin - comment]

[image: Contact Admin - comment]

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	User Guide

Parts Implemented by Member Name

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

Developer Guide

INSTALL

Project uses postgres as database. You need to install postgresql locally or use vagrant.

By default application uses vagrant settings for database. If you installed it locally you will need to set DSN in local_settings.

Prepare Environment:

	
	Create virtual environment in venv folder:

	$ virtualenv venv -p python3

	
	Install project requirements:

	$ pip install -r requirements.txt

	
	Initialize database:

	$ python manage.py migrate

	
	Run application:

	$ python manage.py runserver

local_settings File:

* Create "local_settings.py" file in project root directory.
* Add custom settings to file.

Available Settings:

>>> DEBUG=True # Debug mode
>>> DSN="..." # Postgres credentials, check `DEFAULT_DSN` in `application.py` file.
>>> HOST="127.0.0.1" # Application host
>>> PORT=5000 # Application port
>>> SENTRY_DSN="..." # Sentry dsn setting

Environment Variables:

* 'VCAP_APP_PORT' - Bluemix application port
* 'VCAP_SERVICES' - Bluemix settings for services
* 'SENTRY_DSN' - Sentry DSN (logging)
* 'CI_TESTS' - Travis CI environment
* 'SECRET_KEY' - Secret key for cookies

Database Design

	Main tables are users and movies.

	user_followers connects to users table as ManyToMany using follower_id and following_id.

	status_messages connects both to movies and users as ManyToOne, stores movie comments and personal status messages in timeline.

	user_messages connects to users as ManyToMany using sender_pk and receiver_pk. Stores private messages.

	celebrities table created for storing celebrities like actors, directors and etc.

	casting stores movie cast information, connects to celebrities using celebrity_pk (ManyToOne).

	directors acts same as casting.

	playlists connects to users as ManyToOne using user_id

	playlist_movies stores movies for playlists, connects both to playlists and to movies. Connects playlists to movies as ManyToMany.

	

include the E/R diagram(s)

Code

Creating new models:

	Create your new models inside lightmdb/models/ folder.

	As everyone in team should write few sql command, we will not use Base objects.

	Each object should have get, filter, save and delete methods:

.. code-block:: python

 class Movie:
 @classmethod
 def get(cls, pk=None):
 # Use Unique keys as possible parameters for function
 # Fetch movie from database as dictionary
 # Return Movie object with database values
 # If there is no matching result, return None

 @classmethod
 def filter(cls, limit=100, order="id DESC", **kwargs):
 # Fetch movie using parameters (filters) in kwargs
 # Use limit and order with default values
 # Return list of Movie objects
 # If there is no matching result, return empty list ([])

 def save(self):
 # if self.pk is present, update database with current values
 # if it is new object, insert into database
 # add "RETURNING id" to sql if you need pk after execution (see Movie)
 # Return call to get method:
 return Movie.get(identifier=self.identifier)

 def delete(self):
 # If object is not populated from database, ie. self.pk is None:
 raise ValueError("Movie is not saved yet.")
 # Delete Movie using identifier from database.
 # Do not return anything

	__init__ section of object should take parameters in same order as in schema.sql file.

	After creating model add it to lightmdb/models/__init__.py file.

Create Form for each Model:

	In order to safely create Model using user’s request parameters create Form based on Model.

	Forms should be under lightmdb/forms/ folder.

	After creating form add it to lightmdb/forms/__init__.py file.

Creating View:

	To show your new model in client you will need add view for it.

	Create view file under lightmdb/views/ folder.

	Make Blueprint variable for you view, add all views for that Blueprint.

	Add your Blueprint variable to lightmdb/views/__init__.py file.

Add view to urls:

	In order to enable views we need to add them in lightmdb/application.py file.

	Add your new view to DEFAULT_BLUEPRINTS parameter.

	Run server and check your view

Writing Tests:

CI will test project in each pull request using /tests.py file. Add your new model and view tests in that file.

Work done by each team member:

List with issues for each team member can be found on Github Projects [https://github.com/itucsdb1630/itucsdb1630/projects/1]

	Parts Implemented by Emin Mastizada

	Parts Implemented by Emre Eroglu

	Parts Implemented by Memduh Gökırmak

	Parts Implemented by Seda Bilgin
	ContactUS
	Table Definition

	Class
	Methods

	Template Operations

	ContactComments
	Table Definition

	Class
	Methods

	Template Operations

	Parts Implemented by Onur Can Carkci

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	Developer Guide

Parts Implemented by Emin Mastizada

	Project Syntax (application, management, models, views, forms)

	Base User Model

	Session Management

	Github, Bluemix, Travis, RTD setup

	Base Template

	Developer Guide

	Status Messages Model

	Followers Model

	IMDB Search and Save (with Emre)

	Youtube Trailer Search

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	Developer Guide

Parts Implemented by Emre Eroglu

	Database Integration

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	Developer Guide

Parts Implemented by Memduh Gökırmak

	Tables for Movie, Playlist, Playlist_Movie, Celebrity, Casting, Director

	Views for Movie, Playlist

	Models for all above

	UI Implementation full for Movie, creation and reading for Playlist, only reading Celebrity, Casting, Director on pages of relevant movies

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	lightmdb 1.0 documentation

 	Developer Guide

Parts Implemented by Seda Bilgin

[image: Contact Admin - update]

ContactUS

Table Definition

The ContactUs table is defined to have id, title, content, email, phone, status, sendTime, deleted columns. The id increases serially, and the status assigned “New” by default.Status column data in ContactUs table is a type of contactStatus and contactStatus is defined with an enum type. ContactUs table is in schema.sql file.

CREATE TYPE contactStatus AS ENUM ('new', 'replied', 'waiting', 'spam', 'closed');
CREATE TABLE contactUs (
 id SERIAL PRIMARY KEY,
 title VARCHAR(100) NOT NULL,
 content VARCHAR(255) NOT NULL,
 email VARCHAR(50) NOT NULL,
 phone VARCHAR(50) NOT NULL,
 status contactStatus DEFAULT 'new',
 sendTime timestamp DEFAULT CURRENT_TIMESTAMP,
 deleted BOOLEAN DEFAULT FALSE
);

Class

“ContactMessage” class is under models/contact.py file. Class __init__() is shown in below.

def __init__(self,cid=None,title=None,content=None,email=None,phone=None):
 if cid:
 self.cid = int(cid)
 if title:
 self.title=str(title)
 if content:
 self.content=str(content)
 if email:
 self.email=str(email)
 if phone:
 self.phone=str(phone)
 if cid:
 self.saved_message=True
 contact_info=self.get_info_by_id()
 if contact_info:
 self.title = contact_info[0]
 self.content = contact_info[1]
 self.email = contact_info[2]
 self.phone = contact_info[3]
 self.status =contact_info[4]
 self.sendTime = contact_info[5]
 else:
 self.saved_message=False

Methods

	Select

	Select operation gets data from ContactUs table by id.

def get_info_by_id(self):
 try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("SELECT title,content,email,phone,status,sendtime FROM {table} "+
 "WHERE id=%s".format(table=self.TABLE_NAME),[self.cid])
 contact_info= cursor.fetchone()
 if contact_info:
 return contact_info
 except:
 return False

	Selecting of rows with desired status or deleted marked of table.

 @staticmethod
def get_messages(desired_status=None,get_deleted=False):
 accepted_status=[]
 all_status = ['new', 'replied', 'waiting', 'spam', 'closed']
 if not desired_status:
 desired_status = ['new','replied','waiting']
 for one_status in desired_status:
 if one_status in all_status:
 accepted_status.append(one_status)
 where =''
 if not get_deleted:
 where = 'deleted=False and (status=\''
 if len(accepted_status) > 0:
 where += '\' or status = \''.join(accepted_status)
 where += '\')'
 try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("SELECT id,title,content,email,phone,status,sendtime from"+
 " contactUs where "+where)
 return cursor.fetchall()
 except:
 return []
 return []

	Insert

	Insert operation adds data to ContactUs table.

def save(self):
 try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("INSERT INTO {table} (title,content,email,phone) VALUES"+
 " (%s,%s,%s,%s)".format(table=self.TABLE_NAME),
 [self.title,self.content,self.email,self.phone])
 cursor.close()
 db.commit()
 db.close()
 return True
 except:
 return False

	Update

	Update operation changes status of row by identified id if new status is one of contactStatus type.

def change_status(self,new_status):
 all_status=['new','replied','waiting','spam','closed']
 if new_status in all_status:
 self.status = new_status
 try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("UPDATE {table} SET status=%s WHERE"+
 " id=%s".format(table=self.TABLE_NAME),
 [new_status,self.cid])
 cursor.close()
 db.commit()
 db.close()
 return True
 except:
 return False
 return False

	Delete

	Delete operation delete row by identified id.

def delete_message(self):
 db = get_database()
 cursor = db.cursor
 ##cursor.execute("UPDATE {table} SET deleted=1 WHERE
 ## id=%".format(table=self.TABLE_NAME), [self.cid])
 cursor.execute("DELETE FROM {table} WHERE id=%s".format(table=self.TABLE_NAME),
 [self.cid])
 cursor.close()
 db.commit()
 db.close()

Template Operations

Route of website pages with POST,GET methods are in views/contactus.py

This class uses wtforms module to prepare form of page.

class ContactForm(Form):
 """Form to be used in contactus page."""
 title = StringField('title', [
 validators.Length(min=5, max=100),
 validators.DataRequired("Please, enter title.")
],
 render_kw={
 "placeholder": "Title",
 "class": "form-control"
 }
)
 content = TextAreaField('Content', [
 validators.Length(min=10, max=255),
 validators.DataRequired("Please, enter content.")
],
 render_kw={
 "placeholder": "Content",
 "type" : "textarea",
 "class": "form-control",
 "rows": "10",
 "cols": "50"
 }
)
 email = EmailField('Email', [
 validators.Email("Please, enter correct email address."),
 validators.DataRequired("Please, enter your email address.")
],
 render_kw={
 "placeholder": "E-mail",
 "class": "form-control"
 }
)
 phone = StringField('phone', [
 validators.Length(min=5, max=50),
 validators.DataRequired("Please, enter phone number.")
],
 render_kw={
 "placeholder": "Phone number",
 "class": "form-control"
 }
)

‘/contact/’ website is running with the code below.

By default, page creates a form with a class under form/contactus.py file.
if there is not any post to website, app sends a page using contact/contact.html template with prepared form.
else form will be validated and ContactMessage object will be created then saved and app sends a page using contact/thanks.html template.

View of Contact Admin page

Saved messages are shown in contact/admin page.

Thıs page shows all messages with desired status, default desired status is ‘new’. If Page form is posted desired types can be select.
If pages posted data has ‘deleted’, ContactMessage object will be created by id and will be deleted.
If page posted data has ‘update’, ContactMessage object will be created by id and status of mesaage is updated.

@contactus.route("/admin/", methods=["GET", "POST"])
def contact_admin():
 desired_types = ['new']
 comments=[]
 pk_contact=0
 notpost=0
 if request.method == 'POST':
 flash(request.form)
 if 'update' in request.form and 'status' in request.form:
 message=ContactMessage(request.form['update'])
 message.change_status(request.form['status'])
 if 'sendMail' in request.form:
 send_mail = True
 else:
 send_mail = False
 if 'commentUpdate' in request.form:
 comment=ContactComment(pk=request.form['commentUpdate'])
 comment.update_comment(request.form['comment'],send_mail)
 else:
 comment=ContactComment(pk_contact=message.cid,
 comment=request.form['comment'],
 send_mail=send_mail)
 comment.save()
 if 'delete' in request.form:
 message = ContactMessage(request.form['delete'])
 message.delete_message()
 comment=ContactComment(pk_contact=message.cid)
 comment.delete_comments_by_contact_id()
 elif 'deletecomment' in request.form:
 comment = ContactComment(pk=request.form['deletecomment'])
 comment.delete_comments_by_id()
 desired_types=[]
 all_types=['new','replied','waiting','spam','closed']
 for one_type in all_types:
 if one_type in request.form:
 desired_types.append(one_type)
 if 'showComments' in request.form:
 pk_contact=request.form['showComments']
 contact_comment=ContactComment(pk_contact=pk_contact)
 comments=contact_comment.get_comments_by_contact_id()
 if not comments:
 comments=[]
 else:
 notpost=1

 messages=ContactMessage.get_messages(desired_types)
 return render_template(
 'contact/contactadmin.html',
 table=messages,
 comments=comments,
 pk_contact=int(pk_contact),
 post=request.form,
 len=len(comments),
 notpost=notpost,
 thead=[
 'Title', 'Content', 'Email',
 'Phone', 'Status', 'Sent Time','Comment' ,'Delete'
]
)

ContactComments

Table Definition

The ContactComments table is defined to have id, pk_contact, comment, sendMail, sendTime, deleted columns. The id increases serially, by default send time will be inserted time and deleted will be false.ContactComments table is in schema.sql file.

Referance sql queries:

Class

“ContactComment” class is under models/contactComment.py file. Class __init__() is shown in below.

Methods

	Select

	Select operation gets data from contactComments table by id.

def get_comments_by_contact_id(self):
try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("SELECT id,comment,sendmail,sendtime FROM {table} WHERE pk_contact=%s".format(table=self.TABLE_NAME),[self.pk_contact])
 contact_info= cursor.fetchall()
 if contact_info:
 return contact_info
except:
 return False

	Insert

	Insert operation adds data to contactComments table.

def save(self):
try:
 db = get_database()
 db.cursor.execute("INSERT INTO {table} (pk_contact,comment,sendmail) VALUES (%s,%s,%s)".format(table=self.TABLE_NAME),[self.pk_contact,self.comment,self.send_mail])
 db.commit()
 return True
except:
 return False

	Update

	Update operation updates comment and sendMail columns of row identified by object id.

def update_comment(self,comment,sendmail):
try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("UPDATE {table} set comment=%s , sendmail=%s WHERE id=%s".format(table=self.TABLE_NAME),[comment,sendmail,self.pk])
 contact_info= cursor.fetchall()
 if contact_info:
 return contact_info
except:
 return False

	Delete

	delete_comments_by_id method deletes row by identified id.

def delete_comments_by_id(self):
try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("DELETE FROM {table} WHERE pk_contact=%s".format(table=self.TABLE_NAME),[self.pk])
 contact_info= cursor.fetchall()
 if contact_info:
 return contact_info
except:
 return False

	delete_comments_by_contact_id method deletes rows by contact_id

def delete_comments_by_contact_id(self):
 try:
 db = get_database()
 cursor = db.cursor
 cursor.execute("DELETE FROM {table} WHERE pk_contact=%s".format(table=self.TABLE_NAME),[self.pk_contact])
 contact_info= cursor.fetchall()
 if contact_info:
 return contact_info
 except:
 return False

Template Operations

Route of website pages with POST,GET methods are in views/contactus.py

View of Contact Admin page

Comments adding deleting inserting updating and selecting are in contact/admin page.

By default page do not prepare any object for comments.
If pages posted data has ‘showComments’, comments of contact will be prepared by contact id.
If pages posted data have ‘update’ and ‘commentUpdate’, comment and send mail columns will be updated.
If pages posted data have ‘update’ but not ‘commentUpdate’, ContactMessage object will be created and will be save.
If pages posted data has ‘deletecomment’, object will be created by comment_id and will be deleted.

App run for this page with ‘contact/contactadmin.html’ template.

@contactus.route("/admin/", methods=["GET", "POST"])
def contact_admin():
 desired_types = ['new']
 comments=[]
 pk_contact=0
 notpost=0
 if request.method == 'POST':
 flash(request.form)
 if 'update' in request.form and 'status' in request.form:
 message=ContactMessage(request.form['update'])
 message.change_status(request.form['status'])
 if 'sendMail' in request.form:
 send_mail = True
 else:
 send_mail = False
 if 'commentUpdate' in request.form:
 comment=ContactComment(pk=request.form['commentUpdate'])
 comment.update_comment(request.form['comment'],send_mail)
 else:
 comment=ContactComment(pk_contact=message.cid,comment=request.form['comment'],send_mail=send_mail)
 comment.save()
 if 'delete' in request.form:
 message = ContactMessage(request.form['delete'])
 message.delete_message()
 comment=ContactComment(pk_contact=message.cid)
 comment.delete_comments_by_contact_id()
 elif 'deletecomment' in request.form:
 comment = ContactComment(pk=request.form['deletecomment'])
 comment.delete_comments_by_id()
 desired_types=[]
 all_types=['new','replied','waiting','spam','closed']
 for one_type in all_types:
 if one_type in request.form:
 desired_types.append(one_type)
 if 'showComments' in request.form:
 pk_contact=request.form['showComments']
 contact_comment=ContactComment(pk_contact=pk_contact)
 comments=contact_comment.get_comments_by_contact_id()
 if not comments:
 comments=[]
 else:
 notpost=1

 messages=ContactMessage.get_messages(desired_types)
 return render_template(
 'contact/contactadmin.html',
 table=messages,
 comments=comments,
 pk_contact=int(pk_contact),
 post=request.form,
 len=len(comments),
 notpost=notpost,
 thead=[
 'Title', 'Content', 'Email',
 'Phone', 'Status', 'Sent Time','Comment' ,'Delete'
]
)

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 Navigation

 	
 previous

 	lightmdb 1.0 documentation

 	Developer Guide

Parts Implemented by Onur Can Carkci

 Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

 _images/search-movies.png
LightMDB | postor strange TOPLISTS ~ PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

o e S L Doctor Strange (2016)
= 3 IMDB: 7.9/ PG-13 / 115 minutes
Open your mind. Change your really.
Aformer neurosurgeon embarks on a journey of healing only to be drawn into the world of the mystic arts.

[E VIEW DETAILS

Doctor Strange (2007)
IMDB: 6.8 / PG-13 / 76 minutes

_images/trailer.png
Doctor Strange Official Trailer 2

_images/registration.png
TOPLISTS PLAYLISTS SIGNIN REGISTER

LightMDB

_images/admin.png
LightMDB et TOPLISTS ~ PLAYLISTS ~ MESSENGER ADMIN (@) LIGHTMDB ADMIN

ADMINISTRATION

Add a Movie Add a Playlist Contact Admin

Copyright ©2016 LightMDB o ° @ Privacy Policy Contact US

_images/follow.png
LIGHTMDB ADMIN
NO BADGES YET

1 &0 <0

_images/profile-button.png
TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

TOP RATED MOVIES

o]

FOLLOWERS LISTS FOLLOWING

AveNiers

mare ., e e

o witun amunt v B oUW LW DOCTOR A CAFTAiN-.AMERICA
“Thue winTen soLouER

The Avengers (2012) Guardians of the Galaxy Captain America: Civil Iron Man (2008) Doctor Strange (2016) Captain America: The
(2014) War (2016) Winter Soldier (2014)

81 00 81 00 80 0.0 79 00 79 00 78 00

_images/profile.png
Mol s

EMIN MASTIZADA
NO BADGES YET

o &0 <0

EDIT PROFILE

STATUS MESSAGES

ADD MESSAGE

3 hours ago
Ilove Marvel Cinematic Universe

Copyright ©2016 LightMDB o ° @ Privacy Policy Contact US

_images/messageStatus.jpg
LightMDB | Searen TOPLISTS ~ PLAYLISTS ~ SIGNIN REGISTER

SENT QUESTIONS

Choose types
¢ New (1 Replied (1 Waiting [Spam (1 Closed [FE)

Copyght © 2015 Light¥DB ° o @ Privacy Policy Contact US

Title Content Email Phone Status Sent Time Comment Delete

Wantto How can | change my password user@example.com 555111222333 new 2016-12:30
ask o6:41:45.002805 (e [t
oo

Replied

Replied
Waiting
Spam
Closed

1 Is Comment sent to user?

-]

_images/movie.png
LightMDB

TOPLISTS PLAYLISTS

DOCTOR STRANGE

Aformer neurosurgeon embarks on a journey of healing only to be drawn into the world.

of the mystic arts.

#PG-13 Ei115minutes 42016 @ Watch Trailer

Marvel's "Doctor Strange" follows the story of the talented neurosurgeon Doctor
Stephen Strange who, after a tragic car accident, must put ego aside and lear the
secrets of a hidden world of mysticism and alternate dimensions. Based in New York
City's Greenwich Vilage, Doctor Strange must act as an intermediary between the real
world and what lies beyond, utiising a vast array of metaphysical abilties and artifacts
1o protect the Marvel Cinematic Universe.

After a horrible car accident, brillant neurosurgeon Stephen Strange must find a way
and a cure to healing his hands. His quest brings him to Kamar-Taj in Nepal where he
studies under the Ancient One, who teaches him the ways of magic and alternate
realities. With new skills of interdimensional travel and spells, Strange soon discovers
that he must protect the world from a deadly enemy who is out to destroy i

MESSENGER (@) EMIN MASTIZADA

DIRECTORS

CAST

+ Scott Derrickson
+ Benedict Cumberbatch
« Chiwetel Ejiofor

« Rachel McAdams

« Benedict Wong

« Mads Mikkelsen

« Tilda Swinton

+ Michael Stuhibarg

« Benjamin Bratt

+ Scott Adkins

« Zara Phythian

+ Alaa Safi

« Katrina Durden

+ Topo Wresniwiro

« Umit Uigen

_images/home.png
Lightos M

Welcome to L/gh

 WE ARE MOVIE

_images/messaging.png
LightMDB

LightMdb Admin

| searcn

TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

hat with LightMdb Admin

LightMdb Admin © 2016-12:30 0655234798312 | delete
Welcome to LightMDB. Have fun

delete | © 2016-12:30 065310215938 Emin Mastizada

Thanks. Awesome tools :D

Type your message here.

_images/privacy.png
LightMDB

TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

LIGHTMDB PRIVACY NOTICE

December 19, 2016,

Your privacy is an important factor that LightMDB (that's us) considers in the development of each of our products and services. We are committed to being transparent and
open. This LightMDB Privacy Policy explains generally how we receive information about you, and what we do with that information once we have it

What do we mean by "personal information?"
For us, "personal information” means information which identfies you, like your name or email address.

Any information that falls outside of this is *non-personal information.”

If we store your personal information with information that is non-personal, we will consider the combination as personal information. If we remove all personal information from
a set of data then the remaining is non-personal information.

How do we learn information about you?
« You give it to us directly (e.0., when you register);
« Our services collect information automatically (e.g., when you browse our website, system automatically records ip address);
« Crash reports automatically saves some base information about you like browser model and Operating System;

search.html

 Navigation

 		lightmdb 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, ITU itucsdb1630.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/img/messaging.png
LightMDB

LightMdb Admin

| searcn

TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

hat with LightMdb Admin

LightMdb Admin © 2016-12:30 0655234798312 | delete
Welcome to LightMDB. Have fun

delete | © 2016-12:30 065310215938 Emin Mastizada

Thanks. Awesome tools :D

Type your message here.

_static/img/privacy.png
LightMDB

TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

LIGHTMDB PRIVACY NOTICE

December 19, 2016,

Your privacy is an important factor that LightMDB (that's us) considers in the development of each of our products and services. We are committed to being transparent and
open. This LightMDB Privacy Policy explains generally how we receive information about you, and what we do with that information once we have it

What do we mean by "personal information?"
For us, "personal information” means information which identfies you, like your name or email address.

Any information that falls outside of this is *non-personal information.”

If we store your personal information with information that is non-personal, we will consider the combination as personal information. If we remove all personal information from
a set of data then the remaining is non-personal information.

How do we learn information about you?
« You give it to us directly (e.0., when you register);
« Our services collect information automatically (e.g., when you browse our website, system automatically records ip address);
« Crash reports automatically saves some base information about you like browser model and Operating System;

_static/comment.png

_static/down.png

_static/img/search-movies.png
LightMDB | postor strange TOPLISTS ~ PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

o e S L Doctor Strange (2016)
= 3 IMDB: 7.9/ PG-13 / 115 minutes
Open your mind. Change your really.
Aformer neurosurgeon embarks on a journey of healing only to be drawn into the world of the mystic arts.

[E VIEW DETAILS

Doctor Strange (2007)
IMDB: 6.8 / PG-13 / 76 minutes

_static/img/trailer.png
Doctor Strange Official Trailer 2

_static/img/registration.png
TOPLISTS PLAYLISTS SIGNIN REGISTER

LightMDB

_static/img/admin.png
LightMDB et TOPLISTS ~ PLAYLISTS ~ MESSENGER ADMIN (@) LIGHTMDB ADMIN

ADMINISTRATION

Add a Movie Add a Playlist Contact Admin

Copyright ©2016 LightMDB o ° @ Privacy Policy Contact US

_static/img/follow.png
LIGHTMDB ADMIN
NO BADGES YET

1 &0 <0

_static/img/profile-button.png
TOPLISTS PLAYLISTS ~ MESSENGER (@) EMIN MASTIZADA

TOP RATED MOVIES

o]

FOLLOWERS LISTS FOLLOWING

AveNiers

mare ., e e

o witun amunt v B oUW LW DOCTOR A CAFTAiN-.AMERICA
“Thue winTen soLouER

The Avengers (2012) Guardians of the Galaxy Captain America: Civil Iron Man (2008) Doctor Strange (2016) Captain America: The
(2014) War (2016) Winter Soldier (2014)

81 00 81 00 80 0.0 79 00 79 00 78 00

_static/img/profile.png
Mol s

EMIN MASTIZADA
NO BADGES YET

o &0 <0

EDIT PROFILE

STATUS MESSAGES

ADD MESSAGE

3 hours ago
Ilove Marvel Cinematic Universe

Copyright ©2016 LightMDB o ° @ Privacy Policy Contact US

_static/img/movie.png
LightMDB

TOPLISTS PLAYLISTS

DOCTOR STRANGE

Aformer neurosurgeon embarks on a journey of healing only to be drawn into the world.

of the mystic arts.

#PG-13 Ei115minutes 42016 @ Watch Trailer

Marvel's "Doctor Strange" follows the story of the talented neurosurgeon Doctor
Stephen Strange who, after a tragic car accident, must put ego aside and lear the
secrets of a hidden world of mysticism and alternate dimensions. Based in New York
City's Greenwich Vilage, Doctor Strange must act as an intermediary between the real
world and what lies beyond, utiising a vast array of metaphysical abilties and artifacts
1o protect the Marvel Cinematic Universe.

After a horrible car accident, brillant neurosurgeon Stephen Strange must find a way
and a cure to healing his hands. His quest brings him to Kamar-Taj in Nepal where he
studies under the Ancient One, who teaches him the ways of magic and alternate
realities. With new skills of interdimensional travel and spells, Strange soon discovers
that he must protect the world from a deadly enemy who is out to destroy i

MESSENGER (@) EMIN MASTIZADA

DIRECTORS

CAST

+ Scott Derrickson
+ Benedict Cumberbatch
« Chiwetel Ejiofor

« Rachel McAdams

« Benedict Wong

« Mads Mikkelsen

« Tilda Swinton

+ Michael Stuhibarg

« Benjamin Bratt

+ Scott Adkins

« Zara Phythian

+ Alaa Safi

« Katrina Durden

+ Topo Wresniwiro

« Umit Uigen

_static/img/home.png
Lightos M

Welcome to L/gh

 WE ARE MOVIE

