lightmdb Documentation
Release 1.0

ITU itucsdb1630

December 30, 2016

Contents

1 User Guide 3

2 Developer Guide 9

lightmdb Documentation, Release 1.0

Team itucsdb1630
Members
* Emin Mastizada
e Emre Eroglu
¢ Memduh Gokirmak
* Onur Can Carkci
¢ Seda Bilgin
Light Movie DataBase
We love watching movies, make lists for different emotions and times.

Current movie database sites became very complex and interaction between users are minimum. Our idea is to
create social network on movies for movie lovers like us. Share ideas, follow professionals, reviewers and friends,
review movies, make your playlists. Get notification when new movies added by your favorite director or in your
lovely categories.

We are Movie Discussion Network.

Contents:

Contents 1

lightmdb Documentation, Release 1.0

2 Contents

CHAPTER 1

User Guide

* In homepage there is intro about website, Top Movies and Top Users:

LiohtDs

A

Welcome to Light Mo&ie‘t%m@as@

¢ Check Privacy Notice to learn details of information that will be used after registration:

LIGHTMDB PRIVACY NOTICE

* There is registration and sign in button at navigation, register for website:

 After registration go to profile and check details:

* Profile Page where you can edit details, delete account and write status messages:
* You can navigate to other profile pages and follow people you know:

* When users follow each-other they will be able to chat over direct messaging:

* Search for movies using search bar on top:

¢ View movie details:

lightmdb Documentation, Release 1.0

TOPLISTS PLAYLISTS

TOP RATED MOVIES

PveNes

.o

"The Avengrs (2012) Guarians of e Galary - Caplan Amsrics: i

2014) War (2016)

‘Captain America: Tho
Wiinter Solder (2014)

51 00 81 00 80 00 79 00 79 00 78 00

EMIN MASTIZADA
NO BADGES YET

wo o <0

Dekte Prole

STATUS MESSAGES

3 hours age
Hlove Marvel Cinematic Universe.

Capyrght 02016 LighthoB.

900

LIGHTMDB ADMIN
NO BADGES YET

i &0 <0

Urlollow

TOPLISTS PLAYLISTS MESSENGER (@) EMIN MASTIZADA

Lighias Admin

Emin Mastzada e

Doctor Stange TOPLISTS PLAYLISTS

-

IMDB: 7.9/ PG-

Afomer neur

[caing . e mysic ars.

Doclr Stange (2007
IMDE:6. PG-13178 minuios

Chapter 1.

User Guide

lightmdb Documentation, Release 1.0

DOCTOR STRANGE

MESSENGER (@) EMIN MASTIZADA

DIRECTORS

¢ Also watch movie trailer:

* Administration members will have one extra button in navigation for admin page:

ADMINISTRATION

Copyright ©2016 LghiDs

1.1 Parts Implemented by Emin Mastizada

—

—_— =
D

© »® Nk »w N

Home page

Admin page

Registration page

Login page

User profile page

Follow, unfollow ajax (javascript)
Status Message

Movie Search

Movie page

Privacy Policy and License Compability

. Gravatar Images

LightBox for trailers

1.1.

Parts Implemented by Emin Mastizada

lightmdb Documentation, Release 1.0

1.2 Parts Implemented by Member Name

1.3 Parts Implemented by Memduh Gokirmak

1. Playlists page
2. Various former revisions of movie page

3. Single avg file for camera shape

1.4 Parts Implemented by Seda Bilgin

1.4.1 CONTACT US PAGE

Users can ask questions by submitting the form on “Contact Us” page. There are some validation controls while
submitting the form. For examle users could not submit without an e-mail or enter chracters to phone number.

TOPLISTS PLAYLISTS SIGN IN REGISTER

© PLEASE ASK @

1.4.2 CONTACT US ADMIN PAGE

On Admin page users could select sent questions and search and list questions by their status. Sent questions with
“New” status are listed by default.

Users also update the status of sent questions by clicking “ADD”".

1.4.3 Comments

On Contact admin page users could add comments on sent questions while updating their status.

After clicking “Show” users could see previous comments and update or delete comments.

1.5 Parts Implemented by Member Name

6 Chapter 1. User Guide

lightmdb Documentation, Release 1.0

Search TOPLISTS PLAYLISTS SIGN IN REGISTER

SENT QUESTIONS

Choose types

New (| Replied [Waiting (| Spam ‘Clused

Copyright © 2016 LightMDE ° o o

Title. Content Email Phone Status Sent Time Comment Delete
Want to How can | change my password user@example com 555111222333 new 2016-12-30 -
ask 06:41:45 942885
Search TOPLISTS PLAYLISTS SIGN IN REGISTER

SENT QUESTIONS

Choose types

« New [Replied [Waiting [} Spam L Closed [EEIET)

Copyright 2016 LightMDB o o @

Title Content Email Phone Status Sent Time Comment Delete
Want to How can | change my password user@example.com 555111222333 new 2016-12-30
ask 06:41:45.942885
Replied v |
Waiting
Spam
Closed
4
Is Comment sent to user?
[save | Close Comment Adder
Search TOPLISTS PLAYLISTS SIGN IN REGISTER
Choose types
New || Replied || Waiting - Spam (| Closed
Copyright © 2016 LightMDB o o 0
Title Content Email Phone Status Sent Time Comment Delete
Want to How can | change my password user@example com 555111222333 new 2016-12-30 m -
ask 06:41:45.942885
Replied v

Comment

Is Comment sent to user?

B Clase Comment Adder

1.5.

Parts Implemented by Member Name

lightmdb Documentation, Release 1.0

Search TOPLISTS PLAYLISTS SIGN IN REGISTER
Choose types
“ New ¢ Replied [Waiting () Spam [/ Closed [EEZT
Copyright © 2016 LightMDB o o @
Title Content Email Phone Status Sent Time Comment Delete
Want o How can | change my password user@example.com 555111222333 replied 2016-12-30 - -
ask 06:41:45.942885 .
Comment Mail Sent Time Update Delete
test comment False 2016-12-30 07:21:22.005631
Search TOPLISTS PLAYLISTS SIGN IN REGISTER
Choase types
New # Replied || Waiting [Spam (| Closed m
Copyright @ 2016 LightMDB ° o 0
Title Content Email Phone Status Sent Time Comment Delete
Want to How can | change my password user@example.com 555111222333 replied 2016-12-30 -m -m
ask 06:41:45.942885 S
Comment Mail Sent Time Update Delete
test comment False 2016-12-30 07:21:22.005631
Waiting o
change commen|
4
) Is Comment sent to user?
Close Comment Adder

Chapter 1. User Guide

CHAPTER 2

Developer Guide

2.1 INSTALL

Project uses postgres as database. You need to install postgresql locally or use vagrant.

By default application uses vagrant settings for database. If you installed it locally you will need to set DSN in
local_settings.

Prepare Environment:
* Create virtual environment in venv folder: $ virtualenv venv -p python3
« Install project requirements: $ pip install -r requirements.txt
« Initialize database: $ python manage.py migrate
* Run application: $ python manage.py runserver

local_settings File:

+ Create "local_settings.py" file in project root directory.
* Add custom settings to file.

Available Settings:

>>> DEBUG=True # Debug mode

>>> DSN="..." # Postgres credentials, check 'DEFAULT DSN' in ‘application.py| file.
>>> HOST="127.0.0.1" # Application host

>>> PORT=5000 # Application port

>>> SENTRY_DSN="..." # Sentry dsn setting
Environment Variables:

« 'VCAP_APP_PORT' - Bluemix application port

* 'VCAP_SERVICES' - Bluemix settings for services
« '"SENTRY_DSN' - Sentry DSN (logging)

* 'CI_TESTS' - Travis CI environment

* '"SECRET_KEY' - Secret key for cookies

2.2 Database Design

* Main tables are users and movies.
* user_followers connects to users table as ManyToMany using follower_id and following_id.

* status_messages connects both to movies and users as ManyToOne, stores movie comments and personal
status messages in timeline.

lightmdb Documentation, Release 1.0

* user_messages connects to users as ManyToMany using sender_pk and receiver_pk. Stores private mes-
sages.

celebrities table created for storing celebrities like actors, directors and etc.

casting stores movie cast information, connects to celebrities using celebrity_pk (ManyToOne).

directors acts same as casting.

* playlists connects to users as ManyToOne using user_id

playlist_movies stores movies for playlists, connects both to playlists and to movies. Connects playlists to
movies as ManyToMany.

include the E/R diagram(s)

2.3 Code

Creating new models:
* Create your new models inside lightmdb/models/ folder.
* As everyone in team should write few sql command, we will not use Base objects.

» Each object should have get, filter, save and delete methods:

code-block:: python

class Movie:
@classmethod
def get (cls, pk=None):
Use Unique keys as possible parameters for function
Fetch movie from database as dictionary
Return Movie object with database values
If there is no matching result, return None

H = FH FH

@classmethod

def filter(cls, 1limit=100, order="id DESC", xxkwargs):
Fetch movie using parameters (filters) in kwargs

Use limit and order with default values

Return list of Movie objects

If there is no matching result, return empty list ([])

H= = H

def save (self):

if self.pk is present, update database with current values

if it is new object, insert into database

add "RETURNING id" to sgl if you need pk after execution (see Movie)
Return call to get method:

return Movie.get (identifier=self.identifier)

H H= H

def delete(self):
If object is not populated from database, ie. self.pk is None:
raise ValueError ("Movie is not saved yet.")
Delete Movie using identifier from database.
Do not return anything

e __init__ section of object should take parameters in same order as in schema.sql file.
* After creating model add it to lightmdb/models/__init__.py file.
Create Form for each Model:

¢ In order to safely create Model using user’s request parameters create Form based on Model.

10 Chapter 2. Developer Guide

lightmdb Documentation, Release 1.0

 Forms should be under lightmdb/forms/ folder.
 After creating form add it to lightmdb/forms/__init__.py file.
Creating View:
* To show your new model in client you will need add view for it.
* Create view file under lightmdb/views/ folder.
* Make Blueprint variable for you view, add all views for that Blueprint.
¢ Add your Blueprint variable to lightmdb/views/__init__.py file.
Add view to urls:
* In order to enable views we need to add them in lightmdb/application.py file.
* Add your new view to DEFAULT BLUEPRINTS parameter.
* Run server and check your view
Writing Tests:

CI will test project in each pull request using /tests.py file. Add your new model and view tests in that file.

2.4 Work done by each team member:

List with issues for each team member can be found on Github Projects

2.4.1 Parts Implemented by Emin Mastizada

1. Project Syntax (application, management, models, views, forms)
Base User Model

Session Management

Github, Bluemix, Travis, RTD setup

Base Template

Developer Guide

Status Messages Model

Followers Model

© ® N ok wN

IMDB Search and Save (with Emre)

._.
e

Youtube Trailer Search

2.4.2 Parts Implemented by Emre Eroglu

 Database Integration

2.4.3 Parts Implemented by Memduh Gokirmak

1. Tables for Movie, Playlist, Playlist_Movie, Celebrity, Casting, Director
2. Views for Movie, Playlist
3. Models for all above

4. UI Implementation full for Movie, creation and reading for Playlist, only reading Celebrity, Casting, Direc-
tor on pages of relevant movies

2.4. Work done by each team member: 11

https://github.com/itucsdb1630/itucsdb1630/projects/1

lightmdb Documentation, Release 1.0

2.4.4 Parts Implemented by Seda Bilgin

title contactComments
content id

email —————— pk_contact
phone comment
status sendiail
sendTime sendTime
deleted deleted

ContactUS

Table Definition

The ContactUs table is defined to have id, title, content, email, phone, status, sendTime, deleted columns. The
id increases serially, and the status assigned “New” by default.Status column data in ContactUs table is a type of
contactStatus and contactStatus is defined with an enum type. ContactUs table is in schema.sql file.

CREATE TYPE contactStatus AS ENUM ('new', 'replied', 'waiting', 'spam', 'closed');
CREATE TABLE contactUs (

id SERIAL PRIMARY KEY,
title VARCHAR (100) NOT NULL,
content VARCHAR (255) NOT NULL,
email VARCHAR (50) NOT NULL,
phone VARCHAR (50) NOT NULL,
status contactStatus DEFAULT 'new',
sendTime timestamp DEFAULT CURRENT_ TIMESTAMP,
deleted BOOLEAN DEFAULT FALSE
)i
Class

“ContactMessage” class is under models/contact.py file. Class __init__() is shown in below.

def _ _init__ (self,cid=None,title=None, content=None, email=None, phone=None) :
if cid:
self.cid = int (cid)
if title:

self.title=str(title)
if content:
self.content=str (content)
if email:
self.email=str (email)
if phone:
self.phone=str (phone)
if cid:

12 Chapter 2. Developer Guide

lightmdb Documentation, Release 1.0

self.saved_message=True
contact_info=self.get_info_by_id()
if contact_info:

self.title = contact_infol[0]
self.content = contact_infol[l]
self.email = contact_info[2]
self.phone = contact_infol[3]
self.status =contact_info[4]
self.sendTime = contact_info[5]

else:
self.saved_message=False

Methods
1. Select

* Select operation gets data from ContactUs table by id.

def get_info_by_id(self):

try:
db = get_database()
cursor = db.cursor
cursor.execute ("SELECT title,content,email, phone, status, sendtime FROM {table

"WHERE id=%¢s".format (table=self.TABLE_NAME), [self.cid])
contact_info= cursor.fetchone ()
if contact_info:
return contact_info

except:

return False

* Selecting of rows with desired status or deleted marked of table.

@staticmethod
def get_messages (desired_status=None,get_deleted=False):
accepted_status=[]

all_status = ['new', 'replied', 'waiting', 'spam', 'closed']
if not desired_status:
desired_status = ['new', 'replied', 'waiting']

for one_status in desired_status:
if one_status in all_status:
accepted_status.append(one_status)
where ="'
if not get_deleted:
where = 'deleted=False and (status=\"'"
if len (accepted_status) > 0:
where += '"\' or status = \''.Jjoin (accepted_status)
where += "\")'
try:
db = get_database()
cursor = db.cursor
cursor.execute ("SELECT id,title,content,email, phone, status, sendtime from
" contactUs where "+where)
return cursor.fetchall ()
except:
return []
return []

"+

2. Insert

* Insert operation adds data to ContactUs table.

def save (self):
try:
db = get_database ()

2.4. Work done by each team member: 13

"

lightmdb Documentation, Release 1.0

cursor = db.cursor
cursor.execute ("INSERT INTO {table} (title,content,email,phone) VALUES"+
" (%s,%s,%s,%s)".format (table=self.TABLE_NAME) ,

[self.title,self.content,self.email,self.phone])
cursor.close ()
db.commit ()
db.close ()
return True
except:
return False

3. Update

» Update operation changes status of row by identified id if new status is one of contactStatus type.

def change_status(self,new_status):

all _status=['new',6 'replied', 'waiting', 'spam', 'closed']
if new_status in all_status:
self.status = new_status
try:
db = get_database()
cursor = db.cursor
cursor.execute ("UPDATE {table} SET status=%s WHERE"+
" id=%s".format (table=self.TABLE_NAME) ,

[new_status, self.cid])
cursor.close ()
db.commit ()
db.close ()
return True
except:
return False
return False

4. Delete

* Delete operation delete row by identified id.

def delete_message (self):

db = get_database()

cursor = db.cursor

##cursor.execute ("UPDATE {table} SET deleted=1 WHERE

id=%".format (table=self.TABLE NAME), [self.cid])

cursor.execute ("DELETE FROM {table} WHERE id=%s".format (table=self.TABLE_NAME),
[self.cid])

cursor.close ()

db.commit ()

db.close ()

Template Operations

Route of website pages with POST,GET methods are in views/contactus.py

This class uses wtforms module to prepare form of page.

class ContactForm (Form) :
"""Form to be used in contactus page."""
title = StringField('title', [
validators.Length (min=5, max=100),
validators.DataRequired ("Please, enter title.")
]I
render_kw={
"placeholder": "Title",
"class": "form-control"

14 Chapter 2. Developer Guide

lightmdb Documentation, Release 1.0

)
content = TextAreaField('Content', [
validators.Length (min=10, max=255),
validators.DataRequired ("Please, enter content.")
1,

render_kw={

"placeholder": "Content",
"type" : "textarea",
"class": "form-control",
"rows": "10",

"cols": "50"

email = EmailField('Email', [
validators.Email ("Please, enter correct email address."),

validators.DataRequired ("Please, enter your email address.")

1,

render_kw={
"placeholder": "E-mail",
"class": "form-control"

phone = StringField('phone', [
validators.Length (min=5, max=50),
validators.DataRequired ("Please, enter phone number.")
]I
render_kw={
"placeholder": "Phone number",
"class": "form-control"

}

‘/contact/” website is running with the code below.

By default, page creates a form with a class under form/contactus.py file. if there is not any post to website, app
sends a page using contact/contact.html template with prepared form. else form will be validated and ContactMes-

sage object will be created then saved and app sends a page using contact/thanks.html template.
View of Contact Admin page

Saved messages are shown in contact/admin page.

This page shows all messages with desired status, default desired status is ‘new’. If Page form is posted desired
types can be select. If pages posted data has ‘deleted’, ContactMessage object will be created by id and will be
deleted. If page posted data has ‘update’, ContactMessage object will be created by id and status of mesaage is

updated.

@contactus.route ("/admin/", methods=["GET", "POST"])
def contact_admin() :
desired_types = ['new']
comments=1[]
pk_contact=0
notpost=0
if request.method == 'POST':
flash (request.form)
if 'update' in request.form and 'status' in request.form:
message=ContactMessage (request.form['update'])
message.change_status (request.form(['status'])
if 'sendMail' in request.form:
send_mail = True
else:
send_mail = False
if 'commentUpdate' in request.form:

2.4. Work done by each team member:

15

lightmdb Documentation, Release 1.0

else:

messages=ContactMessage.get_messages (desired_types)
return render_template (

comment=ContactComment (pk=request.form['commentUpdatg
comment .update_comment (request.form['comment '], send_y
else:
comment=ContactComment (pk_contact=message.cid,
comment=request.form['comment'],
send_mail=send_mail)
comment . save ()
if 'delete' in request.form:
message = ContactMessage (request.form['delete'])
message.delete_message ()
comment=ContactComment (pk_contact=message.cid)
comment .delete_comments_by_contact_id()
elif 'deletecomment' in request.form:
comment = ContactComment (pk=request.form['deletecomment'])
comment .delete_comments_by_id()
desired_types=1[]
all _types=['new', 'replied', 'waiting', 'spam', 'closed"']
for one_type in all_types:
if one_type in request.form:
desired_types.append (one_type)
if 'showComments' in request.form:
pk_contact=request.form['showComments"']
contact_comment=ContactComment (pk_contact=pk_contact)
comments=contact_comment .get_comments_by_contact_id()
if not comments:
comments=1[]

notpost=1

'contact/contactadmin.html"',
table=messages,
comments=comments,
pk_contact=int (pk_contact),
post=request.form,
len=len (comments),
notpost=notpost,
thead=[
'Title', 'Content', 'Email',
'Phone', 'Status', 'Sent Time', 'Comment' , 'Delete’

ContactComments

Table Definition

The ContactComments table is defined to have id, pk_contact, comment, sendMail, sendTime, deleted columns.
The id increases serially, by default send time will be inserted time and deleted will be false.ContactComments
table is in schema.sql file.

Referance sql queries:

Class

“ContactComment” class is under models/contactComment.py file. Class __init__() is shown in below.

Methods

16

Chapter 2. Developer Guide

£'])
nail)

lightmdb Documentation

, Release 1.0

1. Select

 Select operation gets data from contactComments table by id.

def get_comments_by_contact_id(self):

try:
db
cursor

get_database ()
db.cursor

cursor.execute ("SELECT id, comment, sendmail, sendtime FROM {table} WHERE pk_contact

contact_info= cursor.fetchall ()
if contact_info:
return contact_info
except:
return False

".format (

2. Insert

* Insert operation adds data to contactComments table.

def save (self):
try:
db get_database ()
db.cursor.execute ("INSERT INTO {table}
db.commit ()
return True
except:
return False

(pk_contact, comment, sendmail)

VALUES ()" . forma:

’

3. Update

» Update operation updates comment and sendMail columns of row identified by object id.

def update_comment (self, comment, sendmail) :
try:
db get_database ()
cursor db.cursor
cursor.execute ("UPDATE {table}
contact_info= cursor.fetchall ()
if contact_info:
return contact_info
except:
return False

set comment= sendmail= WHERE id=

’

".format (table=self.TAl

4. Delete

¢ delete_comments_by_id method deletes row by identified id.

def delete_comments_by_id(self):
try:
db get_database ()
cursor db.cursor
cursor.execute ("DELETE FROM {table} WHERE pk_contact=
contact_info= cursor.fetchall ()
if contact_info:
return contact_info
except:
return False

".format (table

=self.TABLE|NAME), [self.]

¢ delete_comments_by_contact_id method deletes rows by contact_id

def delete_comments_by_contact_id(self):
try:
db get_database ()
cursor db.cursor
cursor.execute ("DELETE FROM {table} WHERE pk_contact=
contact_info= cursor.fetchall ()

".format (t

able=self.TABLE_NAME), [s

2.4. Work done by each team member:

17

lightmdb Documentation, Release 1.0

if contact_info:

return contact_info

except:
return False

Template Operations

Route of website pages with PO

View of Contact Admin page

ST,GET methods are in views/contactus.py

Comments adding deleting inserting updating and selecting are in contact/admin page.

By default page do not prepare

any object for comments. If pages posted data has ‘showComments’, comments

of contact will be prepared by contact id. If pages posted data have ‘update’ and ‘commentUpdate’, comment and
send mail columns will be updated. If pages posted data have ‘update’ but not ‘commentUpdate’, ContactMessage

object will be created and will
comment_id and will be deleted

App run for this page with ‘cont

be save. If pages posted data has ‘deletecomment’, object will be created by

act/contactadmin.html’ template.

@contactus.route ("/admin
def contact_admin () :
desired_types =
comments=1[]
pk_contact=0
notpost=0
if request.metho
flash (re
if 'upda

if 'dele

elif 'de

/", methods=["GET", "POST"])

["new']

'POST':

quest.form)

te' in request.form and 'status' in request.form:
message=ContactMessage (request.form['update'])

message.change_status (request.form['status'])

if 'sendMail' in request.form:
send_mail = True
else:
send_mail = False
if 'commentUpdate' in request.form:
comment=ContactComment (pk=request.form['commentUpdatq
comment .update_comment (request.form['comment '], send_g
else:
comment=ContactComment (pk_contact=message.cid, comment
comment .save ()
te' in request.form:
message = ContactMessage (request.form['delete'])

message.delete_message ()

comment=ContactComment (pk_contact=message.cid)

comment .delete_comments_pby_contact_id()

letecomment' in request.form:

ContactComment (pk=request.form['deletecomment'])
comment .delete_comments_by_id()

comment =

else:

desired_types=[]

all_types=['new', 'replied', 'waiting', 'spam', 'closed"']

for one_type in all_types:
if one_type in request.form:

desired_types.append (one_type)

'showComments' in request.form:
pk_contact=request.form['showComments"']
contact_comment=ContactComment (pk_contact=pk_contact)
comment s=contact_comment .get_comments_by_contact_id()
if not comments:

comments=1[]

if

£'1)
nail)

r=request . forr

18

Chapter 2. Developer Guide

lightmdb Documentation, Release 1.0

notpost=1

messages=ContactMessage.get_messages (desired_types)
return render_template (
'contact/contactadmin.html’',
table=messages,
comments=comments,
pk_contact=int (pk_contact),
post=request.form,
len=1len (comments),
notpost=notpost,
thead=[
'Title', 'Content', 'Email',
'Phone', 'Status', 'Sent Time', 'Comment'

, 'Delete’

2.4.5 Parts Implemented by Onur Can Carkci

2.4. Work done by each team member:

19

	User Guide
	Developer Guide

